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Important – respirometer volume to fish volume vs variation:

Static respirometers

To keep standard og resting metabolic rate variation (noise) 
low keep static respirometer volume to fish volume as low as 
possible = in practice it rarely can be less than 20 but certainly
less than 50

Swimming respirometers:

In practice it is difficult to design a swimming respirometer so 
that respirometer volume to fish volume is as low as 50, often
it is 100 – 200, avoid ratios above 250.  
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Steffensen Mk III Type Swim tunnel
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Metabolic rate of Greenland shark – Greenland June 2015:
Respirometer volume: 1600 Liters; flush pump 5000 L/hr; recirc pump: 5000 L/hr
Largest shark: 330 cm and 346 kg. Oxygen etc measured by YSI 9620 CTD.
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Swimming:

Marine Biological Section 

Bushnell, P. G., Steffensen, J. F. & Schurmann, H. (1994). Exercise metabolism of two species of cod in Arctic
waters, Atlantic cod ,Gadus morhua, and uvak ,Gadus ogak. Polar Biology. 14; 14; 43‐48. 



Marine Biological Section 

Bushnell, P. G., Steffensen, J. F. & Schurmann, H. (1994). Exercise metabolism of two species of cod in Arctic
waters, Atlantic cod ,Gadus morhua, and uvak ,Gadus ogak. Polar Biology. 14; 14; 43‐48. 



Fish Physiology

Swimming

FitFish 2016



Modes of Swimming



Sustained 

Swimming:



Herring



Annualar swimming chamber



Swim Flumes





”Steffensen-design Type I”



”Steffensen Design Type II”



Sustained, prolonged & burst swimming:



Critical swimming speed



Critical swimming speed



Swimming speed vs 

hypoxia



Oxygen consumption

versus swimming speed



VO2 and endurance vs swim speed



Metabolic scope



Prolonged swimming speed

versus temperature



VO2 vs swim speed



Cost of swimming – Videler



Cost of transport



COT vs body size



Swim VO2 of different 

salmonids



Brett, 1965



Var VO2 vs swim speed
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Measuring metabolism the hard 
way..

Other tricks with Fick’s (Principle) 





Adolf Eugene Fick (1829 ‐ 1901)

• devised to measure cardiac output (CO)

• Fick principle‐blood flow to an organ can be calculated 
using a marker if  you know
– Amount of marker taken up by the organ per unit time

– Concentration of marker in arterial blood supplying the organ

– Concentration of marker substance in venous blood leaving the 
organ

• In Fick's original method, the "organ" was the entire human 
body and the marker substance was oxygen.



VO2 = (CO x CAO2)‐ (CO x CVO2)

• CO= cardiac output
• CAO2= Arterial oxygen content 
• CVO2= Venous oxygen  content

• CO= VO2 / (CAO2‐ CVO2 )

• Other markers‐ CO2, dye, temperature 
pulse



VO2 = (CO x CAO2) ‐ (CO x CVO2)

O2 consumed= Amount O2 in – Amount O2 out



VO2 = (CO x CAO2) ‐ (CO x CVO2)

VO2 = CO x (CAO2‐ CVO2)

Flow through respirometer
VO2 = Water Flow  x (CinO2‐ CoutO2)

Stop flow respirometer
VO2 = Water Volume x (CstartO2‐ CendO2)



Applying Fick in fish

Respiratory  
(water)
side

Cardiovascular (blood) side



Ventilation Volume 

Respirometer : VO2 = Water Flow  x (CinO2‐ CoutO2)

Applying Fick in fish on the water side

Fish : VO2 =  ‐ CoutO2)x (CinO2



Flowmeter(Vg)

O2 meter (O2in)

VO2 = Ventilation Volume(Vg)  x (CinO2‐ CoutO2)

O2 meter (O2 out)



HUGHES AND UMEZAWA (1968) OXYGEN CONSUMPTION AND GILL WATER FLOW IN THE DOGFISH 
SCYLIORHINUS CANICULA L. J. Exp. Biol. 49: 557‐564 

VO2 = Ventilation Volume(Vg)  x (CinO2‐ CoutO2)



VO2 = Ventilation Volume(Vg)  x (CinO2‐ CoutO2)

Vent Vol by 
Dye Dilution
V1  x C1 = V2 x C2

V2 =V1 x C1 / C2

Vinh ? (Vg)

Vdye inj x Cdye
Cdye exh







VO2 = Ventilation Volume(Vg)  x (CinO2‐ CoutO2)

Vinh ? (Vg)

Vdye inj x Cdye
Cdye exh

CoutO2 = O2 in syringe

CinO2 = Ambient 
water O2





Applying Fick in fish

Respiratory  (water)
side

Cardiovascular (blood) side



Blood flow (CO)

RESPIROMETER:  VO2 =     Water Flow          x  (CinO2       ‐ CoutO2)

‐ CVO2)
x (CAO2FISH:          VO2 =  

CAO2

CVO2

Doppler or EM 
flow probe









VO2‐body‐ Calculated w/ Fick from cardiovascular side
i.e. VO2= CO x (CAO2 – CVO2) 

VO2‐total= Calculated w/ Fick from respiratory side
i.e. VO2= Vg x  (CinO2‐ CoutO2)

SO WHY THE DIFFERENCE???



VO2‐body‐ Calculated w/ Fick from cardiovascular side
i.e. VO2= CO x (CAO2 – CVO2) 

VO2‐total= Calculated w/ Fick from respiratory side
i.e. VO2= Vg x  (CinO2‐ CoutO2)

VO2‐gill= VO2‐total‐ VO2‐gill



Measuring metabolism in the field 
(pens, cages, tanks, etc.)

VO2 =Vg  x (CinO2‐ CoutO2)

(Frequency (beats/min) x stroke volume (ml/beat))

Assumes‐ VO2 changes primarily in response to Frequency   
and/or

Changes in stroke volume and extraction efficiency are 
closely coupled  and proportional to changes in Frequency.  



Millidine,  K.J., N.B. Metcalfe, and J.D. 
Armstrong (2008). The use of 
ventilation frequency as an accurate 
indicator of metabolic rate in juvenile 
Atlantic salmon (Salmo salar). Can. J. 
Fish. Aquat. Sci. 65: 2081–2087.8oC

16oC

13oC

Diff activities
(feed, chase)

All data on a
single fish

All data on a
single fish





Measuring metabolism in the field 
(pens, cages, tanks, etc.)

VO2 =CO  x (CAO2‐ CVO2)

Heart rate (beats/min) x stroke volume (ml/beat)

Assumes‐ VO2 changes primarily in response to heart rate 
and/or

Changes in stroke volume and extraction efficiency are closely 
coupled  and vary in  proportional to changes in heart rate . 

No/little skin respiration 











CONCLUSIONS ????
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Fundamentals of dissolved gases
Composition of atmospheric air

Gas % volume % mass MW
Nitrogen 78.084 75.6 28.0
Oxygen 20.946 23.2 32.0
Carbon dioxide 0.033 0.05 44.0
Argon 0.934 1.3 39.9

The gases that make up atmospheric air will always strive to reach 
equilibrium with water. 

At 20°C and 760 mmHg the mass of 1m3 of air is 1.2754 
kilograms
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In atmospheric air, the partial pressure of a gas is given by its 
volume percentage and barometric pressure. 

Thus, at a barometric pressure of 772 mmHg, the partial pressure 
of each gas type can be calculated as  

pO2 × 772 mmHg = 161.70 mmHg

pN2 × 772 mmHg = 602.81 mmHg

pCO2 × 772 mmHg = 0.23 mmHg

100
946.20

100
084.78

100
03.0
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Water vapour pressure
A fraction of the air is occupied by moisture in the air – this is 
termed water vapour pressure. 

Water vapour pressure is dependent on temperature and can be 
calculated using the formula derived by Colt (1984)

PWV = A0 × e0.0645×T

where A0 is a constant of 4.7603
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Example

At a temperature of 7°C water vapour pressure is

PWV = 4.7603 × e0.0645×7

= 7.48 mmHg

And at 28°C 

PWV = 4.7603 × e0.0645×28

= 28.97 mmHg
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So in reality at 28°C at a barometric pressure of 772 mmHg the 
partial pressure of a gas is given by its volume percentage and 
barometric pressure minus water vapour pressure. 

pO2 × (772 mmHg – 28.97 mmHg) = 155.64 mmHg

pN2 × (772 mmHg – 28.97 mmHg) = 580.19 mmHg

pCO2 × (772 mmHg – 28.97 mmHg) = 0.22 mmHg

100
946.20

100
084.78

100
03.0



FitFish 2016
Dissolved gases

Elevation
Increase in altitude above sea level causes a decrease in 
barometric pressure. Barometric pressure can be corrected for 
elevation by the following equation

BPALT = BPSL × 10a /760

Where a = 2.880814 – (h is height in meters)

So at sea level a barometer reads a BP of 772 mmHg. At an 
elevation of 432 meters corrected BP is 734 mmHg.

Water vapour pressure is calculated after correction for elevation.

2.19748
h
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Solubility
Gases, like any other chemical compound, are different in how 
much can be dissolved in water, so the partial pressure of each 
gas (although proportional to atmospheric pressure) does not 
translate directly into how much of that gas is in solution.

Simply stated, the amount of a gas species present in solution 
depends on

 Solubility
 Barometric pressure
 Water vapour pressure 
 Concentration of other chemicals in solution
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With changes in barometric pressure and temperature the 
saturation (s) solubility of a gas (i) changes accordingly, and can 
be calculated as

Cs,i = 1000 Ki βi Xi

Where 
Ki is the solubility constant
Xi is the mole fraction
βi is the Bunsen coefficient 

760
WVBP PP 
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Bunsen coefficients
The Bunsen coefficient is temperature and salinity dependent.

O2 and N2 βi = exp [-A1 + A2 (100/T) + A3 ln(T/100)]
CO2 βi = K0 (22.263)
Where K0 = exp[-A1 + A2 (100/T)+ A3 ln (T/100)]
T in Kelvin = °C + 273.15
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Total gas pressure
The sum of pressures of gases in solution is termed the total gas 
pressure.

TGP = pO2 + pN2 + pCO2 + pAr + pWV

Based on the barometric pressure (BP) we can assess whether 
water is less than saturated or oversaturated with gases

Saturation = TGP / BP × 100%
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However –

TGP provides no information on the partial 
pressures of individual gas species. 

Thus a saturation of 123% caused by oxygen (eg pO2 =326 
mmHg) is not a problem, whereas if it were caused by other gases
it would present a problem. 

O2 supersaturation is considered safe up to approximately 300%
N2 supersaturation has adverse effects above 104 – 120% 
depending on species and life stage (more deleterious to fry)
CO2 supersaturation has undesirable effects at low P but not toxic 
until fairly high concentrations
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While it may be desirable to have high pO2 levels it must be kept 
in mind that 

Every mole of O2 consumed produces 1 mole of CO2

As well as nitrogen waste products.

Cumulative oxygen consumption may not always be 
the limiting parameter with build up of other gases 

and further addition of oxygen will not help!!

It is advisable to measure pCO2 and TGP
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When is gas tension a problem?
Since RAS typically recycle >95% of the water only 5% of the 

water will be replaced while the rest undergoes mechanical 
treatment and is recycled to the fish.

Oxygen becomes depleted

Carbon dioxide accumulates

Aeration and possibly degassing (stripping)
becomes necessary
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Example
High fish stocking densities
Example: fish are stocked at a density of 50 kg m3 at 15°C. 
Assuming a BP of 760 mmHg oxygen solubility is 10 mg L-1. 
In 1 m3 there will be 

1000 liters – (50 kg × 1.06 l kg-1) = 947 liters, containing 
947 × 10.07 mg l-1 = 9536 mg O2

Fish that are digesting a meal might consume >150 mg O2 kg-1 h-1

50 kg of fish are consuming 7500 mg O2 per hour

or more than 75% of the oxygen content!  
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Gas transfer
Regardless of interface (water surface or bubbles) the exchange of 
gas species between gas and water follows the two film theory 
where two border layer films (one gas film and one water film) 
inhibit the transport

Gas

O2 (mg l-1)

N2 (mg l-1)

CO2 (mg l-1)

Border layer films
Liquid
Gas

O2

N2

CO2

Thickness of the films depends 
on turbulence: much 
turbulence reduces the layer 
thickness. To achieve good gas 
transport it is important to 
have a thin film
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Mechanisms of gas transport through the two film barrier

From gas to gas film
Combined diffusion and convection. Rapid process due to high gas 
mixing in air.

Though the gas liquid interface
Diffusion. Slow process.

From gas interface to liquid
Convection. Velocity depends on water movement
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Gas transfer per unit time across a surface is given by

= KL × A × (C* - C0)

Where 
dc / dt is change in concentration over time (mg l-1 h-1)
KL is the coefficient for gas transfer (cm h-1)
A is the contact of surface area in relation to volume
C* is the saturation concentration for the gas in liquid
C0 is the starting concentration of the gas in liquid

t
c

d
d
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= KL × A × (C* – C)

The two variables that can more easily be changed are

C* (although a decrease in C would also increase the flux this is 
obviously not desirable). This can be achieved by gas with a high 
content of oxygen (for example pure oxygen)

A Increasing the diffusion area 

KL Changing the configuration of the system, i.e. water or air flow 
rates (G:L ratio)

t
c

d
d
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A
Bubble volume (V)

V = r3 × 4/3 × 

Bubble area (A)

A = 4 ×  × r2

Bubble radius

A
re
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14 fold 
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in volume

5 fold 
increase 
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Properties of bubbles

Note that bubble volume and area are calculated at 
atmospheric pressure 

= KL × A × (C* – C)
t
c

d
d
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Air diffuser types
The airlift pumps 
installed in model 3 
aquaculture facilities 
are typically 
perforated PVC tubes 
with an outer cladding 
of fabric which 
determines the hole 
size for air diffusion.
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In principal, a variety of different diffuser types may be employed, but all 
face the risk of clogging with time, due to biofouling. In many instances 
they also serve a purpose of water movement and must allow for the 
passage of water from below, and bubble size must allow for rapid rising
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C*
I. Changing the pressure of the supplying gas

At 15°C compressed air is added 
at a depth of 1 meter and a pressure of 2 bar

What is the saturation solubility of oxygen?

Cs,i = 1000 Ki βi Xi

1000 ×1.42903 ×0.0345 ×0.20946 × = 20.483 mg l-1

If dry air is being added water vapour pressure is 0

What about nitrogen and carbon dioxide??

760
WVPP 

760
12.531520

= KL × A × (C* – C)
t
c

d
d
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What if we use pure oxygen?

At 15°C oxygen is added at a depth of 1 meter and a pressure of 
1 bar (760mmHg)

What is the saturation solubility of oxygen?

Cs,i = 1000 Ki βi Xi

1000 × 1.42903 × 0.0345 × 1 × = 49.302 mg l-1

pO2 = 477% 

760
760
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Advantages and disadvantages
Air should only be added at pressure slightly higher than ambient 
to prevent supersaturation of other gases.

Using pure greatly increase the partial pressure of oxygen, but has 
little capacity to degas CO2 and N2 due to a very low G:L ratio.
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KL
One way to change the KL is to change the gas:liquid ratio. All 
systems will have an optimal ratio of gas to liquid to perform at its 
best, depending on its intended use – aeration or degassing. 

Aeration G:L < 3:1 

Degassing G:L > 5:1

Why? 
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Sources of oxygen
Oxygen can be obtained from 
commercial suppliers in 
pressurised tanks or as liquid 
oxygen. 

Liquid oxygen is produced by 
cooling compressed air until it 
liquefies and then distilling it 
to fractionate gases. Oxygen 
is supplied to fixed tanks in 
liquid form at a temperature 
of -183°C.
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Aeration devices
Aeration devices can be classified as either

Surface aerator
Subsurface aerator 
Gravity aerator

Depending on whether they spray water into the air, add air to the 
water underneath the surface or use the gravity head to transfer 
gas into the water
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Surface aerators 
Typical surface aerators: 
(a) floating aerator; (b) 
surface aerator with 
draft tube; (c) brush, 
rotor, or paddlewheel 
aerator.
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Subsurface (submerged) aerators 

(a) diffused, (b) U-tube, (c) aerator cone, (d) static tube
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Air lift pumps
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Air in O2 in

Sludge cone

Screen
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Air sources
Air for aeration devices can be supplied by blowers, air pumps or 
regenerative blowers

Regenerative blowers

Blowers have the advantage of providing large volumes of air at 
low pressure, they are energy efficient, reliable and low purchase 
cost 

www.atlanticblowers.com
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Low head oxygenator (packed column)
Exists in many different versions operating on the same principles 
with or without media
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Degassing (CO2 or N2 stripping)
Constructed in a similar manner as aerators, but operate at a much 
higher air flow because air quickly becomes saturated with CO2
leaving the water.

Inexpensive to provide large volumes of air because there is no large 
hydraulic loading (back pressure)
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Degassing CO2
What is important to consider?

1. Carbonate chemistry

2. Dehydroxylation speed (HCO3
- to CO2)
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Efficiency
For design and operational purposes it is desirable to know the 
efficiency of a unit. Factors with a large impact on efficiency are 

 Media type in packed columns (A)

 Number of chambers / volume of media (A + KL)

 Flow rate of air (KL)

 Hydraulic loading (KL)

Changes in these variables can greatly influence performance
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Testing the efficiency of aerators
While the efficiency of the different aerators may be calculated / 
modelled with some accuracy, it is desirable to test their efficiency 
in practice.

Commonly an application can 
be tested under clean water 
conditions. The test is 
performed under unsteady 
state. This means water is 
deoxygenated chemically and 
the aeration device is started 
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using

= KL × A × (C* – C)

The change in oxygen concentration 
over time is used to calculate KLA 
(since it is rarely possible to 
determine each on its own). 

t
c

d
d

y = 0,5861x

0

2

4

6

8

10

12

0 5 10 15 20

[O2]

The relevant part of the 
curve can be used to 
calculate the maximum rate 
of transfer of oxygen into the 
water
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The maximum rate of oxygen transfer is termed the standardised 
oxygen transfer rate (SOTR) measured in kg h-1.

Using the SOTR and the measured energy consumption of the 
device (PIN in kW or hp), the standardised aeration efficiency (SAE 
kg O2 kW-1 h-1) can be calculated as

SAE = SOTR / PIN
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However – you should 
take into consideration the 
diurnal and seasonal 
variation
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Supplemental oxygen 
supply can be 
configured to daily 
cycles or maintained 
constantly.
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Freshwater or saltwater
What are the major differences between freshwater and saltwater 
in terms of aeration and degassing efforts?

= KL × A × (C* – C)
t
c

d
d
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Why does oxygen diffuse into SW more rapidly?
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Energy

1 kcal = 4.18 kJ
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Energy requirements

Mechanical work:

Muscle contraction and 
cellular movement

Transport:
Transport of molecules

and ions 

Synthesis:
Synthesis of complex
molecules from simple 

precursors
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ATP is the energy currency
Adenine

Ribose

Phosphate unit
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ATP is the energy currency

ATP + H2O     ADP + Pi + H+

∆G’ of ATP to ADP = ~30.5 kJ/mol
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Energy currency
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Energy exchange

Movement, active transport & biosynthesis

Fuel oxidation

ATP ADP
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Fuel oxidation
The chemical oxidation of nutrients for energy is divided into 3 
stages:

I. Breakdown of larger molecules into smaller units; proteins are 
hydrolysed to their 20 constituent amino acids, polysaccharides 
are hydrolysed into simple sugars, and fats are hydrolysed into 
glycerols and fatty acids

II. These units are degraded into simple units for metabolic 
processing – mostly the acetyl unit of acetyl CoA

III.Acetyl enters the citric acid cycle by acetyl CoA where they are 
oxidized to CO2. 
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2 CO2

3 NADH
1 FADH2

1 ATP

The net reaction of the citric acid cycle is

Acetyl CoA + 3 NAD+ + FAD + ADP + Pi + 2 H2O

2 CO2 + 3 NADH + FADH2 + ATP + 2 H+ + CoA

NADH and FADH2 are energy
rich molecules. Each contains a 
pair of electrons that are
donated to molecular oxygen, 
whereby a large amount of free
energy is liberated for the 
generation of ATP
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Oxidative phosphorylation
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A series of enzymatic reactions 
drive glycolysis in the cytoplasma

http://programs.northlandcollege.edu/biology/Biology1111/animations/glycolysis.html
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Oxidation of lipid
Fatty acids are transported across the outer mitochondrial 
membrane by carnitine acyl transferases (for e.g. carnitine-
palmitoyl transferase I (CPT-I)), and then couriered across the 
inner mitochondrial membrane by carnitine. 
Once inside the mitochondrial matrix, the fatty acyl-carnitine (such 
as palmitoylcarnitine) reacts with coenzyme A to release the fatty 
acid and produce acetyl-CoA. 
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How much ATP from substrates?
Complete oxidation of palmitate

Palmitoyl CoA + 7 FAD + 7 NAD+ + 7 H2O + 7 CoA
8 acetyl CoA + 7 FADH2 + 7 NADH + 7 H+ 

Each CoA yields 10 ATP = 80 ATP
Each FADH2 yields 1.5 ATP = 10.5 ATP
Each NADH yields 2.5 ATP = 17.5 ATP

= 108 ATP

However, the activation of palmitate costs 2 ATP, so the net yield
for the complete oxidation of palmitate is 
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Metabolism
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Input
Output
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Energy partitioning scheme and nomenclature (NRC, 1981)
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Energy content in nutrients

Nutrient Energy content
(kJ/g)

Oxycal. coefficient
(kJ/g O2)

Protein 23.7 13.36
Fat 39.6 13.72
Carbohydrate 17.2 14.76
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Metabolism
Standard metabolic rate –
Oxygen consumption or energy expenditure in a non-feeding fish

Routine metabolic rate –
Oxygen consumption in a fish performing routine activity

Active metabolic rate –
Oxygen consumption in a swimming fish

Maximum metabolic rate –
The maximum oxygen uptake in a fish

Specific dynamic action –
Oxygen consumption during processing a meal
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What does SMR in fish pay for?

N
on m

itochondrial 
processes

15.7%

Proton leak

30.1%

ATP turnover

54.1%

Modified from Brand et al., 1990
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Contributors to metabolic rate
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Does body size matter?
Usually metabolic rate is expressed in mass specific terms.

For example a 500 gram trout might have a metabolic rate of      
87 mg O2/kg/h

Does this also apply for a 1500 gram trout?

MR = CMb
0.67-0.75
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Measuring on a larger scale
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What is fuelling metabolism?

Carbohydrate (glucose) 

C6H12O6 + 6O2 6CO2 + 6H2O

Fat (palmitic acid)

C16H32O2 + 23O2 16CO2 + 16H2O

6CO2/6O2 = 1

16CO2/23O2 = 0.7
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Amino acid oxidation
Nitrogen quotient 

Similarly, a nitrogen quotient can be calculated 

NQ = MN / MO2

Where MN is the sum of all nitrogen excretion via UN + ZN

Theoretically, if all metabolism is fuelled by protein, then

NQ = 0.27 

To calculate the fraction of metabolism fuelled by protein you 
therefore divide by 0.27 (eg. If NQ is 0.16, then =0.16/0.27 = 
59% is fuelled by protein)
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Energy expenditure from feeding
 Physical processing of food, digestion, and the absorption 

of nutrients
 Biosynthesis, turnover, and deposition of tissue 

macromolecules
 Deamination of amino acids and synthesis of excretory 

products
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Measuring the cost of feeding
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SDA contributors
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Significance of nutrient type
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Significance of physical property 
Postprandial metabolic profile 
of Python molurus, following 
the ingestion of an intact rat, 
the gastric infusion of 
homogenized rat and liquid 
diet, and small intestinal 
infusion of homogenized rat. 
All meals equal in mass to 
25% of snake body mass.

SDA generated from each of 
these meal treatments. 
Magnitude and duration of 
elevated postprandial 
metabolism decline with a 
decrease in the structural 
integrity of the diet and the 
bypassing of gastric 
digestion.
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Meal size
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Meal energy content
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Effects of temperature
Many physiological and biochemical processes are modified when 
fish are acclimated to different temperatures. At the cellular level 
temperature acclimation affects

 Membrane fluidity
 Enzyme activities
 Substrate for energy production
 Mitochondrial density
 Cell recruitment (muscle)
 Contractile properties

Exercise: Discuss how a 10C increase in 
temperature will affect overall energetics 

and feed utilization in fish
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